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Abstract
Noncommutative counterparts of exactly solvable models are introduced on the
basis of a generalization of Saveliev–Vershik continual Lie algebras. Examples
of noncommutative Liouville and sin/h-Gordon equations are given. The
simplest soliton solution to the noncommutative sine-Gordon equation is found.

PACS numbers: 02.30.Ik, 02.40.Gh, 05.45.Yv

1. Introduction

Noncommutative field theories [12] attract attention due to their interesting internal structure
and appearance in noncommutative geometry, string theory and other areas of theoretical
physics. The first step in an investigation of integrable noncommutative theories is to consider
analogues of solvable models on noncommutative two-dimensional manifolds. So far, various
approaches such as the gauged bi-complex [15, 16] or the ∗-product zero curvature approach
[14, 17] (see also [18]) were applied in attempts to construct noncommutative integrable
counterparts of classical integrable models. At the same time, it was shown in [8] that a
general field theory defined on a noncommutative spacetime is non-unitary. Nevertheless, in
two-dimensional case one can consider noncommutative Euclidean models in order to avoid
the non-unitarity.

The general idea is to introduce an associative ∗-product of functions depending on
noncommutative coordinates. A natural candidate is the Moyal product [13]. Then one has
to introduce a noncommutative counterpart of an integrable model system of equations and
show that such a model is integrable. A first naive attempt is to substitute all multiplications
of functions in a commutative integrable equation by a ∗-product. In the case of the Moyal
deformation this method fails, in general, to preserve integrability. That is, in some cases,
such as the U (N ) principal chiral model [14], the integrability survives, but not in most cases.

In this paper, we start with the definition of ∗-product Saveliev–Vershik continual Lie
algebras, provide certain examples of mappings (S∗,K∗0,±) which determine such algebras,
and then we propose a unifying approach to the construction of noncommutative counterparts of
nonlinear exactly solvable models. Noncommutative models obtained in these frames appear
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to be generalizations of systems of integro-differential-type equations constructed on the base
of Saveliev–Vershik continual Lie algebras. Taking into account the powerful experience of the
group-theoretical (representation theory) approach to integrable models in the commutative
case, we conjecture that noncommutative ∗-product continual Lie algebra models are also
exactly solvable subject to certain conditions. In particular cases of the Liouville and sin/h-
Gordon models, we show how to obtain their noncommutative analogues using ∗-product
continual Lie algebras. In contrast to other approaches, we managed to avoid extra constraints
on functions due to an appropriate choice of A±-pairs constructed with the help of continual
Lie algebra generators. Aiming at an investigation of more general representation theory
solutions to noncommutative Toda models we present the simplest soliton solution to the
noncommutative sine-Gordon equation.

2. Saveliev–Vershik continual Lie algebras

Continual Lie algebras were introduced in [1] and then studied in [2, 3, 5]. Suppose E
is an arbitrary (noncommutative) associative algebra over a field F (for instance R or C),
and K0,K± : E × E → E are bilinear mappings. The subspaces ĝ = g−1 ⊕ g0 ⊕ g+1

of the local part of a continual Lie algebra g are isomorphic (as vector spaces) to E. The
subspace gi, i = 0,±1, consists of the elements {Xi(φ), φ ∈ E}, parametrized by elements
of E (continuous set of roots). The generators Xi(φ) are subject to the defining commutation
relations

[X0(φ),X0(ψ)] = X0([φ,ψ]) (2.1)

[X0(φ),X±1(ψ)] = X±1(K±(φ,ψ)) (2.2)

[X+1(φ),X−1(ψ)] = X0(K0(φ,ψ)) (2.3)

for all φ, ψ ∈ E, where [φ,ψ] = φψ − ψφ. It is also assumed that Jacobi identities are
satisfied which leads to the conditions on the mappings K0,±

K±([φ,ψ], χ) = K±(φ,K±(ψ, χ)) − K±(ψ,K±(φ, χ)) (2.4)

[ψ,K0(φ, χ)] = K0(K+(ψ, φ), χ)) + K0(φ,K−(ψ, χ)) (2.5)

for all φ, ψ , χ ∈ E. Then an infinite-dimensional algebra g(E;K) = g′(E;K)/J is
called a continual contragredient Lie algebra with the local part ĝ and the defining relations
(2.1)–(2.3), where g′(E;K) is a Lie algebra freely generated by ĝ, and J is the largest
homogeneous ideal having trivial intersection with g0 [2, 3].

When E is a commutative associative algebra (possibly without unity) over a field F
and the mappings K0, K+(φ,ψ) = −K−(φ,ψ) have a linear form of the action on E × E,
(i.e., for example, K±(φ,ψ) = ±Kφ · ψ , K0(φ,ψ) = Ks(φ · ψ), where K,Ks : E → E),
then conditions (2.4) and (2.5) following from Jacobi identities are satisfied automatically,
and one arrives at the simplest class of Saveliev–Vershik continual Lie algebras. When the
map Ks is an identity, then the map K is called the Cartan operator [2]. The definitions
of temperate, polynomial (in the sense of Gelfand–Kirillov dimension), and constant growth
of a continual Lie algebra are given in [2]. A continual Lie algebra g(E;K) is called the
algebra of temperate growth if for each subspace gn there exists a finite-dimensional subspace
Ln ⊂ g1, dimLn < ∞, such that gn = [gn−1,Ln]. The constant growth is determined by
condition gn � g1 � E.

Let us enumerate principal examples of Saveliev–Vershik continual Lie algebras g(E;K)

[2, 3]:
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(a) Poisson bracket algebra g(E;K): E is an algebra of trigonometric polynomials on
a circle, K = S = −i∂/∂z, with the commutation relation [Xn(φ),Xm(ψ)] =
iXn+m(mφ′ψ − nφψ ′), gn � E. It was shown in [2] that this algebra is isomorphic
to the algebra of functions on a two-dimensional torus T 2 endowed with the standard
Poisson bracket.

(b) The simplest continual limit of Ar : g(E; ∂2/∂z2).
(c) Current algebra on a manifold g(E; k ⊗ I ) � C∞(M, g(k)): E is a space of vector

functions on a manifold M, g(k) is a simple Lie algebra with a Cartan matrix K.
(d) Algebras of diffeomorphisms g(E; I − T , I − T −1) � g(E; 2I − T − T −1): E =

C∞(M),M is a C-class manifold, T is C-diffeomorphism of M, and [Xn(φ),Xm(ψ)] =
Xn+m(φT nψ − nψT mφ′).

(e) Contact Lie algebras [4].
(f) Cartan–Hilbert operator Lie algebra g(E; I ± iH): E is a space of functions on C

1

satisfying Hölder condition, and H is Hilbert transform.
(g) Cross-product Lie algebras g(E; I − T , I − T −1) � g(2I − T − T −1) of finite sums

{∑n φn ⊗ Wn} with commutation relation [φ ⊗ Wn,ψ ⊗ Wm] = (φT nψ − ψT mφ) ⊗
Wn+m, φ,ψ ∈ E. These algebras include Kac–Moody algebras, Lie algebras, associated
with a circle rotation, the algebra of infinitesimal area-preserving diffeomorphisms of a
torus, vector fields on a manifold M (g(E;V, V ), [Xn(φ),Xm(ψ)] = Xn+m(mφV ψ −
nψV φ), where E is a C∞(M) algebra, and V is a vector field on M), Fairlie–Fletcher–
Zachos sine algebras [6, 7], and cross-product Lie algebras with the Cartan operator
defined on a noncommutative associative algebra [3].

Kac–Moody Lie algebras represent discrete limits of continual Lie algebras when E = C
n

(with coordinate multiplication in some basis), and the Cartan operator is a generalized n × n

Cartan matrix K, while commutation relations on a standard set of generators have the usual
form [11]. Note that the consideration of the quotienting g(E;K) = g′(E;K)/J in the
definition of a continual Lie algebra is equivalent in a Kac–Moody Lie algebra case to imposing
the Serre conditions. More examples of Saveliev–Vershik continual Lie algebras can be found
in [2, 3].

2.1. ∗-product continual Lie algebras

Suppose a noncommutative algebra E is endowed with an associative (in general
noncommutative) ∗-product. Introduce a generalization of Saveliev–Vershik continual Lie
algebras which would fit our purposes. Let S∗ be a bilinear mapping S∗ : E ×E → E. We are
interested in continual Lie algebras whose mappings K0,± : E × E → E act on the product
E × E in such a way that functions of E are multiplied with the help of a chosen ∗-product.
Denote such mappings by K∗0 and K∗±.

We define a ∗-product continual Lie algebra g(E; S∗,K∗) = g′(E; S∗,K∗)/J (where
g′(E; S∗,K∗) is generated by a local part ĝ = g−1 ⊕ g0 ⊕ g+1) with commutation relations on
the elements of the subspaces gi = {Xi(φ), φ ∈ E}, i = 0,±1

[X0(φ),X0(ψ)] = X0(S∗(φ,ψ)) (2.6)

[X0(φ),X±1(ψ)] = X±1(K∗±(φ,ψ)) (2.7)

[X+1(φ),X−1(ψ)] = X0(K∗0(φ,ψ)) (2.8)

for all φ, ψ ∈ E. Jacobi identities imposed on the generators X0,±1 imply the following
conditions (which generalize (2.4) and (2.5)) on the mappings (S∗,K∗0,±):
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K∗±(S∗(φ,ψ), χ) = K∗±(φ,K∗±(ψ, χ)) − K∗±(ψ,K∗±(φ, χ)) (2.9)

S∗(ψ,K∗0(φ, χ)) = K∗0(K∗+(ψ, φ), χ) + K∗0(φ,K∗−(ψ, χ)) (2.10)

S∗(φ, S∗(ψ, χ)) + S∗(ψ, S∗(χ, φ)) + S∗(χ, S∗(φ,ψ)) = 0 (2.11)

for all φ, ψ , χ ∈ E. The anti-symmetry condition for (2.6) implies for any φ, ψ ∈ E that

S∗(φ,ψ) = −S∗(ψ, φ). (2.12)

Algebras g(E; S∗,K∗) as well as algebras g(E;K) [2] are Z-graded, i.e., g = g(E; S∗,K∗)
can be decomposed into a direct sum g = ⊕

n∈Z
gn of subspaces subject to the grading

condition [gn, gm] ⊂ gn+m. A nontrivial task is to find examples of such mappings (S∗,K∗0,±)

that would satisfy conditions (2.9)–(2.12). Though some examples (with S∗(φ,ψ) ≡ 0
or S∗(φ,ψ) = [φ,ψ] with usual multiplication of functions) that involve noncommutative
product have been found in [2, 3], we believe that the set of such mappings is much more
broader and should include noncommutative generalizations of Saveliev–Vershik continual
Lie algebra examples given in the previous subsection.

Let us present new noncommutative examples of mappings (S∗,K∗) that generalize linear
action mappings on a commutative algebra E used in [2, 3]. We will take advantage of some
of these ∗-product continual Lie algebra examples in the construction of noncommutative
counterparts of classical exactly solvable models.

I. The simplest nontrivial example of mappings (S∗,K∗) is

S∗(φ,ψ) = [φ,ψ]∗ (2.13)

K∗0(φ,ψ) = φ ∗ ψ (2.14)

K∗+(φ,ψ) = φ ∗ ψ (2.15)

K∗−(φ,ψ) = −ψ ∗ φ (2.16)

where [φ,ψ]∗ = φ ∗ ψ − ψ ∗ φ. Another set of mappings (S∗,K∗) can be obtained
interchanging K∗+ with K∗−. The mappings in examples II–IV represent deformations of
example I mappings.

II.

S∗(φ,ψ) = Kφ ∗ ψ − Kψ ∗ φ (2.17)

K∗0(φ,ψ) = Kφ ∗ ψ (2.18)

K∗+(φ,ψ) = Kφ ∗ ψ (2.19)

K∗−(φ,ψ) = −Kψ ∗ φ (2.20)

K2 = K (2.21)

i.e., K is a projector. In examples II–IV we assume that a mapping K acts on a ∗-product of
functions as K(φ ∗ ψ) = Kφ ∗ Kψ . It is easy to note that example II can be obtained
from example I by the transform M1(K) = m∗ ◦ K1 ◦ m−1

∗ , where m∗ is a mapping
m∗ : E ⊗ E → E ∗ E, m−1

∗ is its inverse, and K1 is the standard notation for K ⊗ Id.
Thus,

(
SII

∗ ,KII
∗0,±

) = M1(K) ◦ (
SI

∗ ,KI
∗0,±

)
.

III.

S∗(φ,ψ) = [φ,ψ]∗ (2.22)

K∗0(φ,ψ) = ±Kφ ∗ ψ (2.23)
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K∗+(φ,ψ) = Kφ ∗ ψ (2.24)

K∗−(φ,ψ) = −ψ ∗ φ (2.25)

K2 = 1 (2.26)

and
(
K III

∗0 ,K III
∗+

) = M1(K) ◦ (±KI
∗0,K

I
∗+

)
, while the mappings S∗ and K∗, remain the same.

One can also find examples similar to examples II and III where mappings (S∗,K∗) act on the
second multiplier in E × E by a map K subject to the same conditions on K.

IV.

S∗(φ,ψ) = [φ,ψ]∗ (2.27)

K∗0(φ,ψ) = K0φ ∗ K0ψ (2.28)

K∗+(φ,ψ) = K+φ ∗ ψ (2.29)

K∗−(φ,ψ) = −φ ∗ K−ψ (2.30)

K0 ◦ K+ = K0 ◦ K− = 1 (2.31)

where K0,± are some mappings. This example is given by KIV
∗0 = K0 ◦ KI

∗0. KIV
∗+,− =

M1,2(K+,−) ◦ KI
∗+,−, M2(K) = m∗ ◦ K2 ◦ m−1

∗ ,K2 = Id ⊗ K .
One can verify that the sets of mappings in examples I–IV satisfy conditions

(2.9)–(2.11) following from Jacobi identities as well as the anti-symmetry condition (2.12).
These sets of mappings (with a linear form of the (S∗,K∗)-action on E × E) represent a
small and the simplest subset of ∗-product continual Lie algebras. We will show in sections 3
and 4 that with any example of ∗-product continual Lie algebra one can associate a system of
nonlinear equations which would play the role of a noncommutative analogue of a commutative
integrable model. The limited scope of this paper does not allow us to elaborate more on all
examples of ∗-product continual Lie algebras though some of them are rather interesting
in applications to noncommutative geometry. We should mention that both ordinary and
∗-product continual Lie algebras have not been studied well enough yet. The structure theory,
as well as a representation theory for them is far from complete. As in an ordinary Lie algebra
case [9], a representation theory (and, in particular, analogues of highest weight modules)
plays the central role in a construction of exact solutions to systems of equations obtained on
the base of continual Lie algebras.

3. Noncommutative counterparts of exactly solvable models

In commutative two-dimensional case, an exactly integrable system may be introduced [9]
through the zero curvature condition on holomorphic and antiholomorphic elements of a flat
connection in the trivial holomorphic principal fibre bundle over a manifold M endowed with
commutative coordinates z±. Suppose g is a (infinite-dimensional) Lie algebra endowed with
a Z-grading. Then the general form of holomorphic and antiholomorphic elements A± of a
connection is the following:

A± = e0
± +

m±∑
a=1

ea
± (3.1)

where gm± is the highest (lowest) subspace in the grading decomposition of g used in A±,

e0
± = ∑n0

i=1 u±i x0
i , n

0 = dim g0; ea
± = ∑na

±
i=1 f a

±i xa
±i , na

± = dim g±a , x0
i ∈ g0, x

a
±i ∈ g±a

are elements of the subspaces g0,±a of a chosen Z-grading, and u±i (z
+, z−), f±i (z

+, z−) are
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arbitrary differentiable functions of z±. The zero curvature condition [∂+ + A+, ∂− + A−] = 0,
leads to the system of equations

∂+e
0
− − ∂−e0

+ +
[
e0

+, e
0
−
]

+
min(m+,m−)∑

a=1

[
ea

+, e
a
−
] = 0 (3.2)

m±∑
a=1

(
∂∓ea

± +
[
e0
∓, ea

±
]) −

∑
1�b<a�m±

[
ea
∓, eb

±
] = 0. (3.3)

It turns out that the system (3.2), (3.3) is exactly integrable. The exact integrability of a
model means that it is possible to find solutions depending on a sufficient number of arbitrary
functions of z± in the form of a series which is finite in the case of a finite-dimensional Lie
algebra, and infinite (though absolutely convergent) in a finite growth infinite-dimensional
Lie algebra g case [9]. Exactly solvable models defined on multidimensional manifolds were
introduced in [10].

On the base of ∗-product continual Lie algebras defined in the previous section, it is
possible to construct noncommutative counterparts of exactly integrable models considered
in [1–3]. Suppose E is a noncommutative associative algebra of functions depending on
noncommutative variables z± = (

z±
µ

)
, which satisfy the commutation relations

[
z+
µ, z−

ν

] =
iθµν, where µ, ν = 1, . . . , N , and θµν are real constants. In this paper we discuss models
defined on a noncommutative two-dimensional manifold M. Further generalizations to
noncommutative multidimensional case will be presented in a separate paper. Introduce
an associative and, in general, noncommutative ∗-product on E. Consider the elements of the
form

A± = X0(u±) +
m±∑

a=±1

na
±∑

i=1

Xa
±i

(
f a

±i

)
(3.4)

where X0 ∈ g0, X
a
±i ∈ g±a, i = 1, . . . , na

± = dim g±a , and u±i
(z+, z−), f a

±i
(z+, z−) are

arbitrary differentiable functions of noncommutative coordinates z±. Then the zero curvature
condition

[∂+ + A+, ∂− + A−] = 0 (3.5)

applied to elements (3.4) generates the system of nonlinear equations

∂+X0(u−) − ∂−X0(u+) + X0(S∗(u+, u−)) +
min(m+,m−)∑

a=1

[
ea

+, e
a
−
] = 0 (3.6)

m±∑
a=1

(
∂∓ea

± +
[
X0(u∓), ea

±
]) −

∑
1�b<a�m±

[
ea
∓, eb

±
] = 0 (3.7)

where ea
± = ∑na

±
i=1 Xa

±i

(
f a

±i

)
. The system (3.6), (3.7) generalizes (3.2) , (3.3) as well as the

system of equations introduced in [2] for the case of Saveliev–Vershik continual Lie algebras.
Note that (3.6), (3.7) is much more nontrivial with respect to (3.2), (3.3) since it allows
generation of noncommutative nonlinear systems of integro-differential equations. In this
paper we consider the simplest case of elements (3.4) when m− = m+ = 1. The higher
grading case, i.e., when m± > 1, will be described elsewhere. Further in the paper a general
noncommutative associative ∗-product is assumed unless we specify it precisely. One can take
for instance the Moyal product [13]

f (z+, z−) ∗ g(z+, z−) = m ◦ eP [f (z+, z−) ⊗ g(ξ+, ξ−)]|ξ±=z± (3.8)
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where P = 1/2θµν∂
(z)
+µ ⊗ ∂

(ξ)
−ν , µ, ν = 1, . . . , N , and m is the mapping m : f ⊗ g → f · g,

where the dot denotes usual multiplication of functions. Finally, we formulate the following:

Conjecture. The system of equations (3.6) and (3.7) on functions of noncommutative
variables z± associated with the Moyal product continual Lie algebra of the constant growth
(gn � g1 � E) is exactly solvable. Its solutions depend on a set of functions of noncommutative
variables subject to certain conditions.

The proof of this statement is not complete at the moment though we plan to present it in a
separate paper [21]. The main idea of the proof (i.e., the construction of exact solutions to the
system (3.6), (3.7) subject to certain conditions on a ∗-product continual Lie algebra) lies in
the usage (as in an ordinary Lie algebra case) of properties of highest weight module analogue
of a ∗-product continual Lie algebra. Though we work in frames of the exact solvability
approach, we would mention that (as it was shown in [14]) an associative ∗-product deformed
zero curvature condition (3.5) considered as a compatibility condition for a pair of ∗-product
deformed linear differential equations implies the existence of an infinite number of conserved
charges (the invertibility of certain operators was assumed). This may serve as an indirect
argument in support of our conjecture.

4. Examples

Exactly integrable models arising from Saveliev–Vershik continual Lie algebras were
considered in [2, 3]. In particular, a class of equations constructed on the base of continual
Lie algebras with a linear form of K0,±-mappings action (for example, K±(φ,ψ) =
(K±φ) · ψ,K0(φ,ψ) = K0(φ · ψ)) was discussed. We believe that ∗-product continual
Lie algebras open the way to more sophisticated exactly solvable models. In this section
we give examples of noncommutative models that correspond to continual Lie algebras with
∗-deformed mappings.

Noncommutative Liouville equation. Consider a ∗-product continual Lie algebra defined by
(2.6–2.8) with the mappings (2.13–2.16) (example I). Let the elements A± be

A+ = X0(u) + X+(1) (4.1)

A− = X−(f ) (4.2)

where u(z+, z−) and f (z+, z−) are arbitrary functions depending on noncommutative
coordinates z±. The zero curvature condition (3.5) applied to (4.1), (4.2) gives

−∂−
(
(f )−1

∗L ∗ ∂+f
)

+ f = 0. (4.3)

We assume that there exists the left inverse function f −1
∗ with respect to the ∗-product,

i.e., (f )−1
∗L ∗ f = 1. Now take f = e

βφ
∗ , β is a constant (we assume also that the ∗-

multiplication by a constant coincides with the usual multiplication) with the ∗-exponential
defined by ex

∗ = ∑∞
n=0

1
n!x

n
∗ , where xn

∗ = x ∗ · · · ∗ x (n-times ∗-product). Then we arrive at
the noncommutative Liouville equation

∂−
(
(eβφ

∗ )−1
∗L ∗ ∂+e

βφ
∗

) = eβφ
∗ . (4.4)

In the commutative limit, when the ∗-product is substituted with the usual product, we get the
Liouville equation.

Noncommutative K-Liouville equation. Consider a ∗-product continual Lie algebra with the
mappings (2.27)–(2.31) (example IV). The same A±-pair (4.1), (4.2) subject to the curvature
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condition (3.5), leads to the model which we call the noncommutative K-Liouville equation

∂−
(
∂+e

βφ
∗ ∗ (K−eβφ

∗ )−1
∗R

) = K0e
βφ
∗ (4.5)

where the subscript R denotes the right inverse function with respect to the ∗-product.

Noncommutative sin/h-Gordon equation. Consider the pair of operators

A+ = X0(u) + X+(1/2) + X−(1/2) (4.6)

A− = X−(f ) + X+
(
f −1

∗L

)
(4.7)

where the generators X0,±(φ) belong to a continual Lie algebra of the example I. Then the
zero curvature condition (3.5) applied to (4.6), (4.7) leads to the equations

−∂−
(
∂+(e

iβφ
∗ )−1

∗L ∗ eiβφ
∗

) = 1
2

(
eiβφ
∗ − (eiβφ

∗ )−1
∗L

)
(4.8)

∂−
(
(eiβφ

∗ )−1
∗L ∗ ∂+e

iβφ
∗

) = 1
2

(
eiβφ
∗ − (eiβφ

∗ )−1
∗L

)
(4.9)

where we have taken f = e
iβφ
∗ . We call (4.8), (4.9) the noncommutative counterpart of the

sin/h-Gordon model. In a similar way, one can obtain the noncommutative Bullough–Dodd
equation. Note that if the derivatives ∂± are with respect to the chosen ∗-product (i.e., the
Leibnitz rule works) then ∂±

(
(e

iβφ
∗ )−1

∗L ∗ e
iβφ
∗

) = 0, and equations (4.8) and (4.9) are in fact
equivalent. In the commutative limit, (4.8) and (4.9) collapse to one sin/h-Gordon equation.

Let a ∗-product in (4.8) and (4.9) be the Moyal product (3.8). Then (4.8) and (4.9) are
equivalent to

∂−(e−iβφ
∗ ∗ ∂+e

iβφ
∗ ) = 1

2 (eiβφ
∗ − e−iβφ

∗ ). (4.10)

It is easy to prove that the noncommutative sine-Gordon equation (4.10) possesses a soliton
solution. Under a soliton solution to a noncommutative equation we mean a function of
noncommutative coordinates z± which has a classical commutative soliton solution as the
limit when θ = 0. The soliton solution to (4.10) has the form

e−iβφ(z+,z−)
∗ = (1 + eγ

∗ ) ∗ (1 − eγ
∗ )−1

∗ (4.11)

where γ = z−−z+. Here (1−e
γ
∗ )−1

∗ denotes the left inverse of the function 1−e
γ
∗ with respect

to the Moyal product. As in the commutative limit, the noncommutative sine-Gordon equation
possesses also a more general soliton solution e

−iβφ(z+,z−)
∗ = (1 + Qe

γ
∗ ) ∗ (1 − Qe

γ
∗ )−1

∗ , where
γ = ω+z

− − ω−z+,Q,ω± are some constants, and 1
2 in (4.10) is rescaled to Q/2ω+ω−.

The proof is rather direct. Note that due to the properties of the Moyal product and the
linear dependence of γ on z±, the noncommutative exponential e

γ
∗ coincides with the ordinary

exponential eγ . Also, the differentiations ∂± are with respect to the Moyal product and, in
contrast to the case of e

φ(z+,z−)
∗ , one can use the usual formulae when differentiating eγ with

respect to z±. In order to prove (4.11) one has to substitute it into (4.10), and take into
account the properties of eγ . The solution (4.11) coincides with the classical soliton solution
in the commutative limit. It can also be proved that a classical multisoliton solution to the
sine-Gordon equation written in a form similar to (4.11) does satisfy the noncommutative
sine-Gordon equation (4.10).

An N-soliton solution to the commutative sine-Gordon equation can be obtained from the
general solution (found in [20] in frames of the group-representation approach [9])

e−iβλφ = 〈λ1|γ −1
+ µ−1

+ µ−γ−|λ1〉
〈λ0|γ −1

+ µ−1
+ µ−γ−|λ0〉

(4.12)
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(where γ±, µ± are holomorphic and antiholomorphic group elements in the Gauss
decomposition) through the ansatz

µ−1
+ (0)µ−(0) =

N∏
i=1

Qi e
Fi(ζ ) (4.13)

(here ζ is related to the rapidity of a soliton) which contains elements of the vertex operator
construction for the ŝl2 algebra [11, 20] (see also [19]). Of course, the existence of a
soliton solution to a noncommutative analogue of an integrable equation does not prove the
integrability of such noncommutative counterpart. Nevertheless, preliminary calculations
show that it is possible to rewrite the soliton solution (4.11) to (4.10) in a form which is
very similar to (4.12) with ordinary vertex operators as well as highest weight vectors of the
fundamental representation of the affine Lie algebra ŝl2, though all expressions would contain
the dependence on noncommutative coordinates. This fact is quite comprehensible, since the
Lie algebra ŝl2 represents a discrete limit of a ∗-product continual Lie algebra. Therefore,
the representation theory of ŝl2 should have some relations with a representation theory of
corresponding continual Lie algebra. The construction of more general (soliton) solutions
and proof of the exact integrability of the Liouville and sin/h-Gordon (and, in general, of
conformal affine Toda models) noncommutative counterparts require further representation
theory development for corresponding ∗-product continual Lie algebras. That point as well as
a noncommutative vertex operator construction will be discussed in a subsequent paper [21].

4.1. Comparison to other approaches

In [14] some other version of the Moyal product, noncommutative sin/h-Gordon model was
constructed. The main equation and two additional constraints have the form

∂+∂−ϕ + m2/β sinh∗(βϕ) = 0 (4.14)

∂−(e−βϕ
∗ ) + β/2(e−βϕ

∗ ∗ ∂−ϕ + ∂−ϕ ∗ e−βϕ
∗ ) = 0 (4.15)

∂−(eβϕ
∗ ) − β/2(eβϕ

∗ ∗ ∂−ϕ + ∂−ϕ ∗ eβϕ
∗ ) = 0 (4.16)

where m, β are constants, and sin∗(βϕ) = 1
2i (e

iβϕ
∗ − e

−iβϕ
∗ ), (sinh∗(βϕ) = i sin∗(βϕ)|β→−iβ).

In [14] the system (4.15), (4.16) was obtained through the ∗-product zero curvature
condition (3.5) applied to the A±-elements constructed on the base of the Pauli matrices
σ±,3, σ± = 1/2(σx ± iσ−) (i.e., a spin 1/2 matrix representation of the Lie algebra sl2,
which is a discrete limit of a continual Lie algebra), A+ = −mλ/2

(
e
βϕ
∗ σ− + e

−βϕ
∗ σ+

)
, A− =

mλ/2(σ− + σ+) − β/2∂−ϕσ3. Using an expansion in the noncommutativity parameter θ , it
was shown in [14] that a one-soliton solution to the classical sine-Gordon equation satisfies
equations (4.15) and (4.16).

In [16] another noncommutative version of the Moyal product sine-Gordon equation was
obtained through the bi-complex approach [15] to (noncommutative) integrable models. The
main equation and the constraint are

∂−(e−iϕ
∗ ∗ ∂+e

iϕ
∗ − eiϕ

∗ ∗ ∂+e
−iϕ
∗ ) = iγ sin∗ ϕ (4.17)

∂−(eiϕ
∗ ∗ ∂+e

−iϕ
∗ + e−iϕ

∗ ∗ ∂+e
iϕ
∗ ) = 0 (4.18)

where γ is a constant.
As it was mentioned in [14] that various noncommutative versions of an integrable

model come from an ambiguity in a noncommutative counterpart of derivative containing
expressions. We argue that all such versions can be obtained in the frames of our unifying
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∗-product continual Lie algebra approach. Note that a matrix representation for the sl2 Lie
algebra generators was used in order to construct the A±-pair for the equations (4.14)–(4.16).
The extra constraints come from the off-diagonal terms due to the choice of an arbitrary
function equal to ∂−ϕ. In contrast to that, in the example C we chose a suitable set of
a continual Lie algebra mappings (S∗,K∗) in order to avoid any extra constraints. At the
same time, it is possible to obtain the equations of noncommutative sin/h-Gordon systems
constructed through the sl2-matrix representation and the bi-complex approach by means of
A± elements containing generators of certain degenerate ∗-product continual Lie algebras.

The authors of [14, 16] deal with noncommutative analogues of integrable equations in
frames of complete integrability. In order to obtain noncommutative analogues of the sine-
Gordon equation both approaches refer to a particular choice of matrices which represent the
gauged bi-complex or a representation of sl2 algebra. Though in [16] an infinite number of
conserved quantities naturally appeared from the bi-complex construction, it is not known
whether they are in involution. In contrast to that we are looking for exact solutions, and our
approach (as well as that of [9] in an ordinary Lie algebra case) is more invariant since we do
not use any kind of a representation in the elements A± which lead to nonlinear systems of
equations.

5. Conclusions

We have introduced ∗-product continual Lie algebras which are generalizations of Saveliev–
Vershik continual Lie algebras. New examples of mappings (S∗,K∗) that determine ∗-product
continual Lie algebras are found. Taking advantage of such properties of Lie algebras we
have formulated a new unifying approach to the construction of noncommutative counterparts
of exactly solvable models. Then we conjecture the exact solvability of such counterparts.
The noncommutative Liouville and sin/h-Gordon equations are presented as examples, and
the simplest soliton solution to the noncommutative sine-Gordon equation is found. There
is no doubt that there exist more complicated (of nonlinear type mapping action) examples
of ∗-product continual Lie algebras. Such examples should lead to noncommutative models
of integro-differential type. Among the first aims is the development of a representation
theory based procedure of solving nonlinear systems of equation introduced in this paper.
Some progress has already been made [21] in the direction of noncommutative soliton vertex
operators which, by analogy with the commutative case, should generate soliton solutions
to noncommutative affine Toda models. On the other hand, it is possible to incorporate
known examples of noncommutative analogues of completely integrable models [15, 17, 18]
to the constructions discussed in the paper. Finally, we would mention the possibility for
super-generalizations of continual Lie algebras, and construction of corresponding solvable
models.
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